Implementing the Brooks et. al. Empirical Bayes Forecasting Model on German Flu Data

Bianca Doone, Joshua Nugent, Kate Hoff Shutta

University of Massachusetts Amherst

Spring 2019

Overview

- Review of Empirical Bayes Methodology
- 2 Preliminary Results
- 3 Implementation Difficulties / Challenges
- 4 Future Refinements to our Implementation

Review of method: Big idea

Developed by Brooks, Farrow, Hyun, Tibshirani, Rosenfeld (2015)

- Generate a set of possible trajectories (the "prior") via transformations of smoothed previous-year curves
- Weight the possible trajectories by their resemblance to season's data so far
- Use weights to create point and interval predictions for the future

Our work:

- Implement method in R6, using ForecastFramework for interoperability
- Original paper applies method to CDC influenza data; we apply it to German flu data from public SurvStat database (https://survstat.rki.de/)

Review of method: Components of Prior

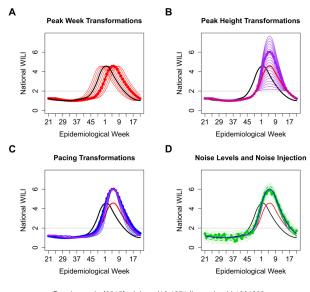
Collect the following from training seasons:

- Smoothed shape using piecewise quadratic filter
- Peak height
- Peak week
- Pace
- Noise

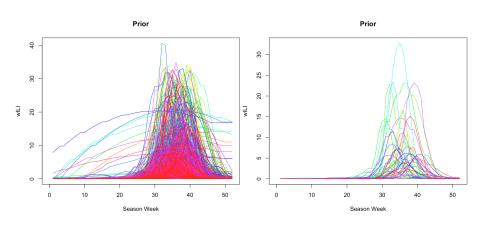
From these values, build candidate trajectories:

- Select a curve at random from previous seasons by drawing from the shapes
- Transform it by drawing randomly from set of peak heights, peak weeks, and pacing
- Associate a noise parameter for weighting during the prediction phase
 The 'prior' is made up of a large set of these possible trajectories.

Review of method: Transformations

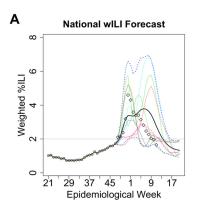


Visualizing the Prior



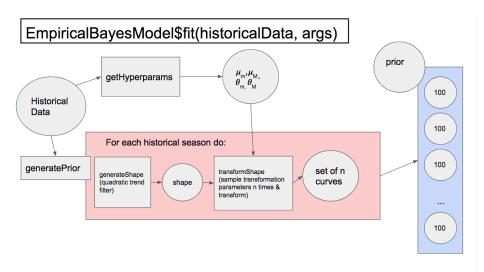
Review of method: Weight curves as data comes in

The weight calculation assumes a normal distribution around each curve and compares the predicted values to the truth, given its associated σ value. Generate a forecast from the weighted future values of the curves.



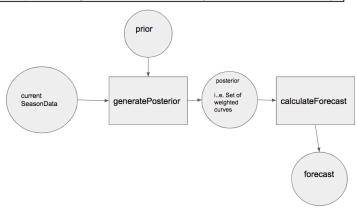
Brooks et al. (2015), doi.org/10.1371/journal.pcbi.1004382

R6 Class Design: Model Fitting

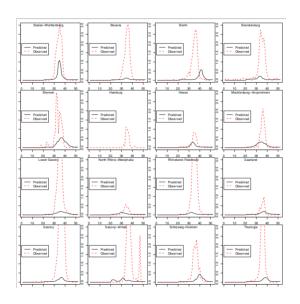


R6 Class Design: Model Forecasting

EmpiricalBayesModel\$forecast(currentSeasonData)



Forecasts: Initial Results: Not good!



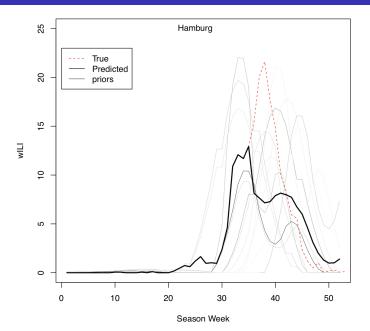
Forecasts: Overfitting, underfitting, time-weighted

Tuning the weighting function was a key step in improving forecasts.

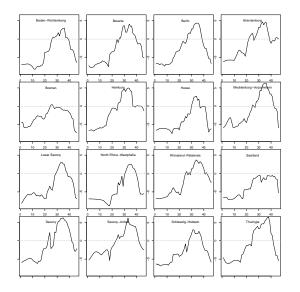
- \bullet σ values extracted from training data were too small; caused NaN errors in forecasting process
- Ad hoc solution: Multiply σ by a constant $C \in (4, 10)$. If C too large, forecasts converge to mean of all curves in prior
- Additional experiment: Does down-weighting older data via an exponential decay function improve forecasts?

Choice of these parameters should be informed by a validation process.

After tuning: Better; weights change over time



Forecasts: Test MSE by Region



• log(MSE) for six weeks ahead vs. season-week

Forecasts: Share across regions? Initial experiments

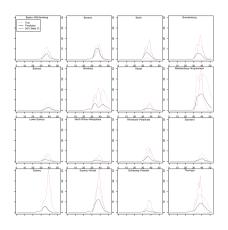


Figure: No sharing across regions

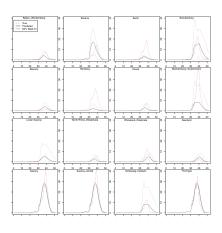
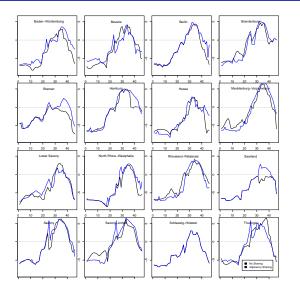


Figure: Sharing across regions

Forecasts: Share across regions? Comparing MSE: Plots



• log(MSE) for six weeks ahead vs. season-week

Forecasts: Share across regions? Comparing MSE: Table

	sig5	sig5_reg	sig100
Baden-Württemberg	1.87	3.67	1.24
Bavaria	5.51	3.77	2.15
Berlin	8.55	11.07	9.22
Brandenburg	10.91	19.55	22.14
Bremen	0.26	1.33	1.74
Hamburg	18.32	25.18	25.25
Hesse	1.37	1.54	1.63
Mecklenburg-Vorpommern	48.63	98.57	56.15
Lower Saxony	1.98	0.53	2.78
North Rhine-Westphalia	1.36	2.36	1.68
Rhineland-Palatinate	4.22	7.26	5.13
Saarland	0.17	1.50	0.49
Saxony	57.19	53.07	40.86
Saxony-Anhalt	24.03	62.54	25.77
Schleswig-Holstein	2.03	2.03	3.56
Thuringia	51.13	23.25	23.31
MMMSE	14.85	19.83	13.94

Implementation Difficulties / Challenges

- How closely to hew to the model used by the original research group vs. make our own modifications
- ullet How to choose the noise parameter? QTF generated very small σ values
- Unclear from paper how prediction intervals were generated; we made our own decisions
- How much should regions be segregated vs. sharing information, in the prior-generating process and/or the forecasting?
- How to handle early-season predictions when so many values are close to zero and weights just latch on to noise?
- QTF did only very mild smoothing. Would other trend-extraction methods work better?
- Optimal value of candidate trajectories to include in the prior?
- Difficult to compartmentalize parts of model and test without re-compiling and re-fitting; time-consuming process

What would we do with more time?

Build an automated CV-based testing system to:

- ullet Try different QTF filtering levels to figure out optimal smoothness parameter and σ value generated
- Experiment with the weighting function to give more recent weeks higher weights (we did this to some extent, but it could be developed further - what time-weighting function is optimal?)
- Test pooling and/or partial pooling of prior values across regions
- Develop a more rigorous (and practically relevant) way of measuring uncertainty

References

Brooks LC, Farrow DC, Hyun S, Tibshirani RJ, Rosenfeld R (2015) Flexible Modeling of Epidemics with an Empirical Bayes Framework. PLOS Computational Biology 11(8): e1004382. https://doi.org/10.1371/journal.pcbi.1004382

Joshua Kaminsky, Justin Lessler and Nicholas Reich (2019). ForecastFramework: A Basis for Modular Model Creation. R package version 0.10.2. https://CRAN.R-project.org/package=ForecastFramework

German flu data collected from SurvStat@RKI 2.0, Robert Koch Institute, https://survstat.rki.de/