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1 Introduction
In cluster-randomized trials (CRTs), also called group randomized trials, subjects are organized in groups.
These groups, rather than the subjects directly, are randomized to the trial interventions (Hayes and Moulton
2017). In these studies, outcomes within a cluster – for example, patients within hospitals or students
within classrooms – are almost certainly correlated with one another. This clustering complicates data
analysis because the common regression assumption that observations are independent is violated. When the
response variable of interest is continuous, linear mixed models (LMMs), which require that observations are
independent only after conditioning on cluster membership, are a common approach to the data analysis.
CRTs are a widely used experimental design (see for example Moon et al. (2017), Vinereanu et al. (2017),
and Huang et al. (2013)), and LMMs are an attractive option for data analysis. Some reasons for this
attractiveness are that LMMs are robust to certain missing data mechanisms and can flexibly accommodate
nested levels of clustering and/or varying cluster sizes (Fitzmaurice, Laird, and Ware 2012). Generalized linear
mixed models (GLMMs) extend the approach to non-Gaussian data, such as binary, count, or multinomial
outcomes.

When fitting LMMs to CRT data, inference on parameters depends on asymptotic results, and in settings
where the number of clusters is small they can generate Type I error rates well above or below the nominal
level (Pinheiro and Bates 2009). All frequentist null hypothesis testing theory depends on tests having the
nominal size – a test with a nominal 5% error rate should produce false rejections 5% of the time. If not,
data analysts in a CRT could be led to inappropriate conclusions, for example, producing too many false
positives or false negatives when evaluating a treatment effect.

Unfortunately, small cluster counts are not uncommon in the literature, because it is often more expensive
to add more clusters to a study than more individuals to a cluster. Despite common heuristics such as ‘at
least 30 units at each level of analysis’ (Kreft 1998), in a sample of 140 recently published cluster randomized
trials in various medical journals, we found that over 30% had fewer than 20 clusters. Another review of 100
CRTs (Kahan et al. 2016) found 37% with fewer than 20 clusters and minimal reporting of any small-sample
corrections employed.

Some investigations of the problems with (G)LMM small sample inference have been conducted. Pinheiro
and Bates (2009), mentioned above, examined a very restricted parameter space. Schluchter and Elashoff
(1990) reviewed the issue from a slightly different angle, examining approaches for longitudinal data with
different covariance structures, which have different interpretations than a typical CRT. Zucker, Lieberman,
and Manor (2000), Melo, Ferrari, and Cribari-Neto (2009), Manor and Zucker (2004), and Stein, Silva, and
Duczmal (2014) suggested improving small-sample inference by applying the Bartlett correction (Bartlett
and Fowler (1937)), also under a smaller set of parameters than we apply here. However, as far as we are
aware there is no simple way for data analysts to implement the Bartlett correction in SAS or R.

Luke (2017), Maas and Hox (2005), and Bell et al. (2010), all examine issues around small numbers of clusters,
but include both random intercepts and slopes, which is not applicable for trials of groups of individuals.
Closer to our setting in this article, Leyrat et al. (2018) evaluated the power and Type I error rates of different
degrees of freedom (DF) choices for LMMs with Wald hypothesis tests for CRT designs under various design
factors. They found both conservative and anti-conservative results, depending on the DF method chosen.
Kahan et al. (2016) reviewed small sample issues, but limited investigation to a small set of parameters and
methods. Johnson et al. (2015) examined LMM Type I error rates, but only for Wald tests with two DF
choices, and did not break down their results by design factors. In the GLMM context, for binary outcomes
only, Li and Redden (2015) examined Type I error rates under different DF choices and found that the rates
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varied widely by method and design factors.

The work discussed above either does not break down the small-sample problems by design factors (interactions
between cluster size and number of clusters, for example), does not compare results to the likelihood ratio
test, and/or examines a limited set of data-generating parameters. Our work aims to add to this literature
by examining in more detail the Type I error control of several LMM inference approaches in a variety of
plausible CRT scenarios. We examine both likelihood ratio test and Wald test results, including different DF
choices for the latter. We also vary cluster size, number of clusters, and intracluster correlation coefficient,
and look at the interactions between these features under the different approaches. We hope to provide
enough detail to alert data analysts to the situations that may lead to incorrect Type I error rates with
LMMs, and give guidance on which methods have the best error control given those factors.

2 Methods
We performed a Monte Carlo simulation study to examine the Type I error control of different LMM inference
approaches under varying, plausible CRT circumstances. First, we describe the statistical model in question
and the difficulties with small-sample inference, then we outline our specific study design. For all data analysis
in this article, we used the SAS/STAT 13.2 (SAS Institute Inc., Cary, NC) and R 3.6.0 (R Foundation for
Statistical Computing) software packages.

2.1 Model
We consider here a version of the linear mixed-effects model of Laird and Ware (1982):

Yij = XT
ijβ + ZTijbi + εij (1)

where Yij is a continuous response variable for individual j in cluster i, XT
ij are that individual’s covariates

for a vector of fixed effect regression parameters β, ZTij are the cluster-level values for a vector of random
effects bi for cluster i, and εij is the residual error of the observation. In our case, matching common practice
in CRTs, we restricted the random-effects structure to include only a random intercept term, so the term
ZTijbi reduces to b0i. We let εij ∼ N(0, σ2) for all individuals, and cluster-level variance b0i was distributed
N(0, σ2

b ), with b0i independent of ε0i. We further assumed that cluster size is uniform for all clusters, and
that there are two treatment arms with an equal number of clusters in each arm, modeled with an indicator
variable xi ∈ {0, 1} for control or treatment arm, with β1 being the treatment effect. Thus, for the remainder
of the article, our model is:

Yij = β0 + β1xi + b0i + εij (2)

2.2 Impact of clustering on inference
In a CRT, there are typically two assumed sources of variability in outcomes: between-cluster, denoted here
as σ2

b , and within-cluster, denoted as σ2. The marginal variance of yij = σ2
b + σ2. One way of quantifying the

amount of clustering is via the intracluster correlation coefficient (ICC) ρ, defined as σ2
b

σ2
b

+σ2 , or the proportion
of total variance due to the cluster-level variability. If one were to incorrectly analyze the data using a
linear model rather than a linear mixed model, standard errors for the coefficient estimates would have to
be adjusted, since observations are correlated in violation of the model assumptions. An approximation of
this adjustment, the design effect (Kish 1965), is the standard error multiplier [(n − 1)ρ + 1], where n is
the number of subjects per cluster. For example, with 10 observations per cluster and an ICC of .01, the
design effect is 1.09, meaning that the linear model standard errors would have to be increased by about
10% to account for clustering. However, with 100 observations per cluster and an ICC of .01, the mulitplier
increases to 2, and for 1000 observations per cluster it increases to 11, meaning that even a very small ICC
can drastically change inferences as cluster size grows. This approximation demonstrates the necessity of
accounting for between-cluster variation in the data analysis, even if the ICC is expected to be small.
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2.3 Inference with LMM fixed effect estimators
Two ways of fitting a linear mixed model are by maximum likelihood (ML) and restricted maximum likelihood
(REML), and most major statistical software packages can perform estimation by either method. Inference
about β̂1 can be made using the likelihood ratio test (LRT) if fitting via ML, or by a Wald test if fitting via
REML. A third test based on the maximum likelihood, the score test, is rarely used in this setting and is not
discussed here. The LRT compares the log-likelihood of a model without β1 (`0) to a model that includes it
(`1), and the test statistic λ = −2(`0 − `1) has a χ2

p distribution, asymptotically, with degrees of freedom
p the difference in parameter dimension between the two models. In our case, as in many CRTs, there is
one treatment effect parameter, so p = 1. In general, the LRT is recommended over the Wald test, as its
asymptotic properties are superior (Cox and Hinkley 1979). Unfortunately, the χ2 distribution may be a
poor approximation of the distribution of λ when the amount of information in a sample, for example, cluster
count, is small.

Alternatively, a Wald test statistic under the null hypothesis H0 : β1 = 0 can be generated by dividing the
estimated treatment effect by its standard error: t∗ = β̂1/SE(β̂1). This value can then be compared to a
central t distribution. Unfortunately, for many designs, it is unclear what the appropriate degrees of freedom
(DF) for that distribution should be (Bates et al. (2015)). Choices include:

• Residual: N − p, where N is the total number of observations and p is the number of fixed-effects
coefficients to be estimated in the model. In the CRT design assumed here, p = 2. Since the number of
observations is usually much larger than the number of parameters in the model, this will generate
similar results to the ‘t as z’ approach described below.

• Between-within: The residual DF are partitioned into between-subject and within-subject groups,
equivalent in this case to a one-way ANOVA decomposition, meaning DF = K − 2, where K is the
number of clusters.

• Satterthwaite approximation: This method, based on the ideas of Satterthwaite (1946), is quite complex,
but it essentially uses the variance of the β1 estimate in its calculation of the DF. For more detail, see
McCulloch, Searle, and Neuhaus (2008), Ch. 6.

• Kenward-Roger approximation: This method, elaborated in Kenward and Roger (1997), inflates the fixed
and random effects variance-covariance matrix, and calculates Satterthwaite DF based on these inflated
values. Under our model with one treatment effect, it generates DF equivalent to the Satterthwaite
approximation.

• Infinite (‘t as z’): The statistic is compared to a standard normal distribution, equivalent to a t
distribution with infinite DF.

2.4 Alternative inferential approaches
The Wald and likelihood ratio tests are not the only options for generating confidence intervals and performing
inference in CRTs. Browne and Draper (2006) and Baldwin and Fellingham (2013), for example, have used
Bayesian methods with mixed models. Under the study designs considered here, these reports showed no
major improvements over frequentist approaches in small-sample settings, so we chose not to include Bayesian
methods in this analysis. Alternatively, confidence intervals for LMM fixed effects can be generated by a
parametric, semi-parametric, or non-parametric bootstrap. All are computationally intensive and require
careful implementation due to the clustered nature of the original sample, so we chose not to investigate
those approaches, though the parametric boostrap has been recommended by some authors, for example
Ukyo et al. (2019).

2.5 Data generation
We generated clustered, balanced data sets from the null model

yij = b0i + εij (3)

for clusters i = 1, 2, ...,K and individuals j = 1, 2, ..., N within each cluster. The random intercept b0i for
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cluster i was distributed ∼ N(0, σ2
b ), and the residual error term εij ∼ N(0, σ2). b0i and εij were generated

as independent pseudorandom variates. We also generated values of xij such that for clusters i = 1, ...K/2,
xij = 0, and for i = K/2 + 1, ...K, xij = 1. This variable represents the treatment indicator, though it was
not used in the data generation, as there is no treatment effect under the null hypothesis.

For each data set, we then fit the model shown in equation (2) using SAS PROC MIXED and the lme4
and lmerTest packages in R. The coefficient of interest in these fitted models, β̂1, represents the estimated
treatment effect.

We gathered p-values for the β̂1 coefficients using the LRT and the Wald test using the various DF options.
We assessed the rejection rate under each test for the null hypothesis that β1 = 0 with α = .05. Since the
data-generating mechanism had a true β1 value of zero, this estimates the TIE rate for the nominal α = .05
level.

We performed our analysis on 10,000 simulated data sets for all possible combinations of the following
data-generating parameters:

• total number of clusters K ∈ {10, 20, 40, 100}, divided evenly among the two treatment arms

• subjects per cluster N ∈ {3, 10, 20, 50}

• σ2
b ∈ {0.001, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5}

• σ2 = 1

We experimented with different magnitudes of σ2
b and σ2 that gave the same ICC, and found that the choice

of magnitude did not affect our results, allowing us to simplify our analysis by fixing σ2 at 1 and only varying
σ2
b .

2.6 Determining p-values
Both PROC MIXED and lme4 report β̂1 estimates, their associated standard errors, and t∗ statistics. This
allows for easy testing of the β̂1 coefficient via a Wald test, fitting with REML. The t∗ statistics generated
were compared to t distributions with three choices of DF: between-within, Satterthwaite/Kenward-Roger,
and residual, as described earlier. We then collected the p-values and calculated TIE rates under the three
DF choices.

Both software packages also allow for model fitting using ML, allowing for model comparison and p-value
determination for β̂1 via the LRT. First, a null model (4) was fit, with the only fixed effect being an intercept
term:

yij = β0 + b0i + εij (4)

Second, a model with an added fixed effect for xij , as in model (2). The doubled difference in maximized
log-likelihood was compared to a χ2

1 distribution since there was a one-parameter difference in model dimension.
P-values from the χ2

1 distribution were collected and TIE rates calculated.

3 Results
Both software packages generated identical β̂1 estimates and standard errors when fitting with REML, and
identical differences in likelihoods when fitting with ML. Reported results are from SAS. In addition, since
the Kenward-Roger and Satterthwaite approximations were indistinguishable in this setting, they are both
labeled as “approximate.”

Results are displayed in Figure 1. Under all approaches, departures from the nominal α level were most
pronounced when the number of clusters is small.

When the number of observations per cluster is small, and there is a relatively small ICC, the LRT demonstrated
appropriate TIE control. Regardless of the number of observations per cluster, the LRT is anti-conservative
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as the ICC rises. However, the anti-conservatism of the LRT was most apparent with smaller ICC when the
number of observations per cluster was larger. Even with as many as 40 clusters and 50 observations per
cluster, the LRT was noticeably anti-conservative once the ICC rose above .1. Worse, even when the ICC was
very small (.01, .02), the LRT was anti-conservative with as few as 20 clusters of 50 observations per cluster.

As for the Wald tests, the between-within and Satterthwaite approximation led to conservative TIE rates
when the ICC was small and/or the cluster size was small, but maintained the appropriate TIE rate with
large clusters or a large ICC. The residual DF choice was less conservative in the case of a small ICC, but
produced anti-conservative results as the ICC increased, and was more anti-conservative when the cluster size
was large. Notably, depending on how the model is fit, the default method for determining DF in SAS may
be ‘containment’, which under this study design leads to SAS assigning residual DF. Since this choice leads
to the most anti-conservative results, it may be a concern for SAS analysts.

We also tested the the effect of an ICC of .09 generated with σ2
b = 1 and σ2 = 10 rather than the values

discussed above. The results did not differ notably, which suggests that this pattern of TIE rate inflation
with the LRT is insensitive to the absolute size of the σ2

b and σ2 values, only their relative size.

Finally, given the balanced nature of our data and the lack of other covariates, we could equivalently have
used a t-test on the cluster means of each treatment arm to perform a hypothesis test. Using this approach,
we achieved close to the nominal .05 alpha level in all cases. These results are omitted from the plot.
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Figure 1: Relationship between Type I error rate and design factors

4 Discussion
To our knowledge, the interactions between our data-generating parameters, analysis approach, and TIE rates
have not been examined comprehensively in previous reports. Our results show that none of the approaches
meet the nominal alpha level in all cases examined, and the departures from the nominal level are directionally
different based on the approach and data structure. Hence, there is no one-size-fits all recommendation for
data analysts in these small-sample cases.

The likelihood ratio test, based on an asymptotic χ2 distribution, does not perform well in these finite-sample
cases. Alternatively, with a Wald test, some choices of DF, such as the Satterthwaite approximation, can
avoid anti-conservatism. However, a tradeoff exists, as it too conservative when the ICC, the number of
clusters, and/or cluster size is small.

The results here suggest that data analysts should choose an approach that best suits their data. For example,
if the ICC is expected to be small and the number of observations per cluster is small, the likelihood ratio
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test should perform well. For cases where the number of observations per cluster is large, a Wald test with
the Satterthwaite approximation is better, though it can be conservative in some situations.

One perhaps unsatisfying conclusion is that analysts may want to generate their own small simulation studies
to evaluate different approaches before fitting their final data models, since they will likely know the model
structure, number of clusters, and cluster size by that point.

Finally, we caution analysts to be careful when using defaults settings in software. For Wald tests, SAS
PROC MIXED may default to the poorly-performing residual DF choice, and the lmerTest package in R
defaults to the Satterthwaite approximation, which may be too conservative in some cases.

It is unclear how aware data analysts may be about the small-sample problems that may arise in making
inference from mixed models. A review of LMM applications in education and social sciences Dedrick et
al. (2009) found minimal reporting of estimation and inference methods and assumptions, and that cluster
sizes could be as low as 2 and the number of clusters as low as 8. Our own review and that of Kahan et
al., referenced earlier, confirmed that small cluster counts are not unusual in biomedical settings as well.
Therefore, we hope this will provide analysts with some recommendations of which approaches control Type
I error at appropriate rates under different circumstances, and we encourage more reporting of DF choices
and analytic methods in CRT publications.

Given that small sample sizes are not uncommon in CRT literature, there is need for more investigation of
which methods control Type I error in other contexts. An immediate next step, following on the work of Li
and Redden (2015), would be to examine TIE rates for Poisson outcomes under these study conditions and
add comparisons to the LRT under both binary and count outcomes. Additionally, more parameters could be
added to the simulations, such as unbalanced cluster sizes or varying ICC by treatment arm. Finally, the
impact of these data/approach interactions on statistical power should be determined so that analysts can
make appropriate sample size calculations during the design phase of a CRT.
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