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Abstract

Generalized linear mixed models (GLMMs) are often used for analyzing data from cluster-randomized trials (CRTs).

Popular statistical software packages allow for different GLMM fitting algorithms, but one of these algorithms, penalized

quasi-likelihood (PQL), has been shown to produce biased parameter estimates. We review the literature to assess

how widely PQL may be used, and conduct a literature-informed simulation study to show the extent of the PQL bias in

plausible CRT settings. We find that the algorithms employed are rarely reported in the literature, and that PQL bias is

most extreme when the cluster size is small and the variability between clusters is large.

Further, intraclass correlation coefficient (ICC) estimates from PQL-fitted models are also shown to vary by outcome

prevalence and treatment effect. Alternatives to PQL estimation are demonstrated to be unbiased and feasible for most

CRT data analysis needs. Analysts should not use PQL and should report fitting methods when reporting trial results.
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Background

Generalized linear mixed models (GLMMs) are a commonly
used method for analyzing data from cluster randomized
trials (CRTs). GLMMs extend generalized linear models
(GLMs) by including an additional random-effects term in
the linear predictor. This term captures variance between
clusters - for example, the group-level differences between
hospitals or classrooms. In settings where interventions
are applied at the cluster level, GLMMs can disaggregate
treatment effects from any underlying variance between
clusters. In medical settings, CRTs with dichotomous
outcomes are very common - for example, estimating
the effect of a new infection control protocol on MRSA
incidence, or the probability of a preterm birth for people
enrolled in prenatal support groups - and GLMMs are a
commonly used tool for analysis.

The optimization problem of fitting a GLMM to data
is a non-trivial task. Two common numerical methods for
estimating the coefficients are penalized quasi-likelihood

(PQL)1 and Gauss-Hermite quadrature (GHQ). A third
method, the Laplace approximation, is equivalent in this
case to a special case of GHQ2, so we will simply consider
it a subset of GHQ in this paper. Other methods, such as
Newton quadrature, Monte Carlo integration, and Markov

Chain Monte Carlo can be used as well3, but since popular
statistical software packages use PQL and GHQ in their
standard GLMM fitting algorithms, we will focus on those
in this paper. The full mathematical details of these three
main methods have been elaborated in other sources1 4, and
an overview of the technical aspects of GLMMs and the
algorithms is given in the Supplemental Material.

Penalized quasi-likelihood was popularized by Breslow
and Clayton5, though similar methods were developed by
others6 7 around the same time. Though it is computationally
efficient, especially for models with many random effects,
PQL can induce bias in certain cases, in particular when
the response variable distribution is far from normal8 9 10 11.
Additionally, PQL produces Wald-type test statistics, not true
likelihoods, making it unsuitable for use in the likelihood
ratio test. Thus is cannot be used for nested model
selection3 4 12.
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Gauss-Hermite quadrature is a more computationally
demanding method, but results in no discernible bias
to coefficient estimates, and can produce true likelihood
statistics for model comparison. The accuracy with which it
computes the model fit is a function of how many quadrature

points are used. All else being equal, the computation time is
roughly proportional to (Nq)

u, where Nq is the number of
quadrature points and u is the number of random effects at
all levels of the model13 4. For a model with 4 random effects
and 5 quadrature points, (Nq)u = 54 = 625. Doubling the
number of points to 10 changes that result to 10, 000, a factor
of 16. For data sets with large numbers of random effects, this
can limit the utility of GHQ.

Luckily for the data analyst, many CRTs have only one
random effect, so computation time will increase linearly
with the number of quadrature points, rather than as a power
function. Furthermore, if many models need to be compared,
using one quadrature point can give preliminary results
rapidly. Then, after that model selection process, the number
of quadrature points can be increased to make the final
estimates as accurate as computationally possible. Empirical
results suggest that 7 or fewer quadrature points often give
suitably accurate estimates14.

For reasons of computational efficiency, PQL was a useful
method when GLMMs were developed, but subsequent leaps
in compuing power have made less biased methods such
as GHQ an attractive alternative. For CRTs with binary
outcomes, where the bias in PQL is the most extreme12 15,
and where the presence of only one random effect is typical,
using GHQ is the best option: fast enough, and, more
importantly, unbiased.

Most modern statistical software packages have functions
to fit GLMMs with dichotomous outcomes, such as PROC
GLIMMIX in SAS, meglm in Stata, and glmer (from the
lme4 package, as well as others) in R. However, the default
fitting algorithm in each of those functions varies. In SAS
PROC GLIMMIX, the default is PQL, with GHQ available
if specified. In R, the glmer function default is GHQ with
a single quadrature point, with more points possible if
specified; PQL is only available in R via the glmmPQL
function in the MASS package. In Stata, meglm defaults to
GHQ with 7 quadrature points; PQL is not an option. In
SPSS, PQL is the default, with no option to use GHQ.

Given that many data analysts may be unfamiliar with the
fitting options, a function’s default settings are influential
on the final results. Below, we investigate how often
functions and algorithms are reported in the literature and
use simulations to describe the bias induced by PQL in a
literature-informed, plausible CRT scenario.

Methods

We started by conducting a literature review among recent
CRTs with dichotomous outcomes to determine a) common
values for cluster size and number of clusters and b) what
software, functions, and fitting algorithms were used to
analyze the data, if reported. In this review, we searched for
the phrase ”cluster randomized trial” in the title or abstract of
all articles in the PubMed database published between March
1st, 2018 and August 31, 2018. Having identified candidate
articles, we filtered to completed CRTs with dichotomous
outcomes. The mean number of observations per cluster and
number of clusters for each study was recorded, as well as
the software and functions/algorithms the authors used, if
available.

The second phase of our work was a simulation study to
investigate the bias of different GLMM fitting algorithms
for dichotomous outcomes. To maximize the utility of the
results, our simulations used a range of plausible cluster
counts and cluster sizes drawn from the literature review.

The data-generating mechanism for the simulations was a
simple logistic-link GLMM with a fixed intercept, treatment
effect, and one random intercept:

logit[Pr(yij = 1|bj)] = β0 + β1xij + bj (1)

with xij an indicator for treatment (1) or control (0) arm of
the study for unit i in cluster j; Pr(yij = 1|bj) the probability
of the outcome for unit i in cluster j; β0 the log odds of
the outcome for the mean cluster in the control arm; random
intercept bj with assumed distribution bj ∼ N(0, σ2); and
β1, our parameter of interest, the log odds ratio due to the
treatment.

From that model, populations were generated with the
following parameter values, informed by the literature
review:

• Number of clusters ∈ {20, 50, 100}
• Number of observations per cluster ∈ {25, 100}
• β0 values corresponding to a baseline prevalence of

.02, .03, and .2
• β1 values corresponding to a treatment effect odds

ratio of 1.1, 1.33, 1.5, and 2
• σ2 values of .1 (low between-cluster variability), .25,

.5, and 1 (high between-cluster variability).

Using 5000 simulated datasets for each combination of
parameters, logistic-link GLMMs were fit via PQL and GHQ
using SAS/STAT software version 15.1 (SAS Institute Inc.,
Cary, NC).
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Figure 1. Odds ratio bias (exp{ ¯̂
β1 − β1} − 1) in PQL

estimation, 25 observations per cluster.

The distribution of β̂1 estimates from each method
was compared to the true value from the data-generating
mechanism and absolute bias was measured as the difference
between the two. The standard errors of estimates and the
estimated cluster variance (σ̂2) were also collected from
the fitted models. Finally, the simulated populations were
re-fit under the assumption that the outcome variable was
normally distributed, without the logit link, and the intraclass
correlation coefficient (ICC) estimated from those models
was collected.

A small number of datasets with small cluster sizes
resulted in zero events in one arm; in this case the estimates
of β1 will tend toward infinity, so these datasets were
excluded from the analysis.

To test the speed of the algorithms, we calculated the mean
CPU time for SAS and R to fit large data sets of 500 clusters
and 500 observations per cluster using the different methods.

Results

The literature review identified 43 candidate articles. Among
them, only 4 identified the specific procedure used (meglm
in Stata or PROC GLIMMIX in SAS, for example). Among
the 11 articles that identified SAS as one of the software
packages, only 2 specified which SAS procedure was used
and none identified the model fitting algorithm. Ten articles
did not report the software used at all.

Parameters for the simulations were chosen after
observing the common values in the literature review. The
median number of clusters was 32, with the middle 50%
between 17 and 70. The number of observations per cluster
showed more variability, with a median of 44 and the middle
50% between 14 and 205.

Figure 2. Odds ratio bias (exp{ ¯̂
β1 − β1} − 1) in PQL

estimation, 100 observations per cluster.

The results of the bias investigation in PQL estimation
are shown in Figures 1-2. When σ2 is large, there is a bias
towards the null: As the true odds ratio rises above 1, there
is a negative bias, meaning the mean estimated odds ratio
is closer to 1 than it should be. In these cases with a large
σ2, the bias is slightly more pronounced for smaller cluster
sizes when the outcome’s baseline prevalence is low. A large
number of clusters leads to the most extreme negative bias,
holding all other factors constant.

As σ2 becomes smaller, the negative bias is diminished,
holding other factors constant. In fact, it can even become
noticeably positive when the clusters are small, the outcome
prevalence low, there are a relatively small number of
clusters, and the between-cluster variability is small, as
shown in Figure 1. In these cases, the pattern reverses, and
there is a bias away from the null.

The fitted models using GHQ (a representative example is
given in Figure 3) did not show a clear bias; PQL is shown
for reference.

Our simulations confirmed that the main advantage of
using PQL over GHQ is speed, shown in Table 1. SAS’s
implementation of PQL outperforms the other methods, and
is much faster than the glmmPQL method in the MASS
package for R. Results for GHQ are similar for both SAS
and the lme4 package in R.

Method R: MASS R: lme4 SAS
PQL 23.3 - 3.7
GHQ (4 quadrature points) - 16.1 18.4
GHQ (10 quadrature points) - 22.0 27.1

Table 1. Mean time in seconds to fit a data set with 500
observations per cluster and 500 clusters.

Though it is not an actual parameter of the model,
data analysts may be interested in the intraclass correlation
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Figure 3. Odds ratio bias (exp{ ¯̂
β1 − β1} − 1) in GHQ (4

quadrature points) and PQL, σ2 = 1, 100 units/cluster, 100
clusters.

Figure 4. ICC estimates, 25 observations per cluster, 50
clusters.

coefficient (ICC). In normally distributed data, the ICC
measures the proportion of total variance that is explained
by the variance between groups. However, in the case
of a non-normally distributed outcome variable, there has
been considerable discussion about how to appropriately
characterize and calculate the ICC16 17. We generated two
ICC estimates using the PQL-fitted models from our
simulation. First, a version that assumed a random intercept
logistic model, implying an ICC of σ2

σ2+π2

3

, based on

the estimated between-cluster variance16. Second, a linear
mixed model was fit using SAS PROC MIXED that assumed
the outcome variable was normally distributed, leading to
the ANOVA-based calculation σ2

σ2+σ2
ε

, where σ2
ε represents

the variance of the residuals16. The results are shown in
Figure 4 for two values of σ2 examined in the simulations. In
both cases, the estimated ICC varies by prevalence, treatment
effect, and ICC calculation method.

Discussion

For CRTs with sample sizes that occurr commonly in the
literature, using PQL to estimate coefficients in random
intercept logistic regression shows a noticeable bias,
particularly if the true odds ratio is far from 1. GHQ,
on the other hand, shows no noteiceable bias, so for the
vast majority of cluster randomized trials with dichotomous
outcomes, GHQ is superior to PQL when fitting models. To
fit a single data set with a small number of random effects,
and given than most CRTs have only one random effect, the
speed of GHQ with 4-10 quadrature points is adequate and it
produces no detectable bias.

We note that data analysts experimenting with different
nested models can use GHQ with a single quadrature point
during the model-selection stage to save time, then larger
number of points once the final model has been chosen. GHQ
is also preferable to PQL in the model-selection process
because PQL only provides quasi-likelihood, and hence it is
not suited to nested model comparison with the likelihood
ratio test. However, model selection is not usually a task in
CRT analysis.

The bias towards the null generated by PQL is
more pronounced when clusters are small, between-cluster
variance is high, baseline incidence of an outcome is low,
and the number of clusters is large. Bias away from the null
may arise when the number of clusters, the cluster size, and
the between-cluster variance is small. Given our simulations,
we suspect that existing studies may have suffered this bias,
though it is hard to be sure given that fitting methods are
rarely reported in the literature. Trial reports should include
methods/functions and the algorithm options in more detail.
We should take care when selecting procedures for fitting
GLMMs, particularly in SAS and SPSS, where PQL is the
default option.

Previous work investigating PQL estimation in scenarios
with dichotomous outcomes has noted the bias3,18, but not
examined the full interactions between cluster size, number
of clusters, baseline prevalence, true odds ratio, and cluster-
level variance as have here. We hope this will make it easy for
analysts to identify situations where bias could be present.

Given the bias it creates, why use PQL? As noted above,
PQL fits models much more quickly than GHQ. However,
our simulations showed that even for large data sets, none
of the runtimes are prohibitively long, given a typical CRT
model with one random intercept term. In a situation where
many models need to be tested, a single quadrature point
could be used to compare models, and then for the final
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analysis, a more accurate fit could be made with a large
number of quadrature points.

Finally, ICC estimates generated by these algorithms may
vary substantially by the method used to calculate them and
by the baseline prevalence of the outcome, and should be
approached with a degree of caution.
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Supplemental material

GLMM Fitting

Mathematically, a GLMM can be modeled as

g(µit) = xT
itβ + zT

itui (2)

with i a cluster indicator, t an observation indicator within cluster

i, g the GLM link function, β a vector of coefficients for covariate

values xit, and zT
it a vector of coefficients for random effects ui,

assumed to be distributed as multivariate normal with mean 0 and

covariance matrix Σ. When the outcomes are dichotomous, the link

function g is typically the logit, and the mean µit is the probability

of the outcome given the covariate values and cluster membership.

To fit a GLMM with a vector xit and corresponding outcome

vector y, it is necessary to integrate the random effects ui out of

the likelihood function 9. That likelihood function, the probability

mass function of y as a function of β and Σ 8, is, in general,

`(β,Σ; y) = f(y;β,Σ) =

∫
f(y|u;β)f(u; Σ)du. (3)

For many link functions of interest, including the logit link

function for dichotomous outcomes considered in this paper and

other situations where the response variable is discrete, the integral

above does not have a closed-form solution 12. Numerical methods

are required to approximate the integral in these circumstances.

PQL iteratively fits a linear mixed model 11 to the data, essentially

approximating the discrete density using a Gaussian density 12.

Further details of PQL have been discussed above.

Gauss-Hermite quadrature approximates the integral of a

function f(·) multiplied by a normal density function; note that it

is very similar to the likelihood function presented earlier where

f(u; Σ) was a multivariate normal and f(y|u;β) the conditional

likelihood. For univariate cases,

∫ ∞
−∞

f(u)exp(−u2)du ≈
q∑

k=1

ckf(sk) (4)

where ck are weights, sometimes from a table, and sk

are the each of the quadrature points used to approximate

the normal density. More quadrature points results in a more

accurate approximation of the integral, but is more computationally

intensive, though various GHQ subvariants have been developed

that increase efficiency and reduce the number of quadrature points

needed 4. With GHQ, inversion of the Fisher information matrix can

provide standard errors for the maximum likelihood estimates of β

and Σ.

The Laplace method approximates the likelihood using a second-

order Taylor expansion 14 and is is equivalent to GHQ with a

single quadrature point 2. Simulation studies have found Laplace

approximations to exhibit mild bias in coefficient estimates, and

significant bias in estimation of the variance components 4.
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